본문 바로가기
카테고리 없음

프로틴 단백질 구조 특징

by 정보공유알림 2022. 12. 10.
반응형

프로틴 protein

아미노산들이 펩타이드(펩티드, peptide) 결합으로 연결된 분자. 자연에 존재하는 단백질은 대략 20가지의 아미노산으로 구성된다.

인간을 비롯하여 지구상의 모든 생물체를 구성하는 물질 중 하나이다.

 

어원

영어 'protein'은 그리스어로 '가장 먼저 중요한 것'을 뜻하는 'πρώτειος'(프로테이오스)에서 유래했다.

··일에서 쓰는 한자어 '단백질'이나 이를 순화한 순우리말 '흰자질' 은 독일어 'Eiweißstoff'(아이바이슈토프, 직역하면 흰자의 성분)를 번역한 것으로 달걀 흰자의 주성분이라는 데서 유래했으며, 영어의 protein과는 어원이 다르다.

일본어대사전에 의하면 '단백질(蛋白質)'이라는 용어의 가장 오래된 용례는 1862년 발간된 일본의 의학서적인 '시바 료카이 의서'에서 찾아볼 수 있다. 시바 료카이는 독일어, 영어, 네덜란드어, 프랑스어, 러시아어, 한문 등에 정통해 질소, 십이지장 등 많은 의학용어를 한자로 번역했다.

단백질

특징

생물체 내에서 단백질은 만능이라 해도 좋을 정도로 다양하게 쓰인다. 생물체 내에서 일어나는 복잡한 화학반응을 일으키는 효소들은 대부분 단백질이다. 근육과 같이 몸을 구성하는 역할도 한다. 뿐만 아니라 면역에 중요한 항체도 단백질로 이루어졌으며, DNA 사슬을 감아 뭉치고 2차적 유전정보를 저장하는 히스톤도 단백질이고, 연골, 피부, 가죽, , 비늘 등을 이루는 주성분 콜라겐과 케라틴도 단백질이다. 거기다 몇몇 호르몬까지도 단백질이다. , 생물의 기본적인 DNA 복제서부터 생물의 외형 형성에 이르기까지 생명의 정수이자 필수 요소, 생명체의 거의 모든 것으로 작용하는 물질. 생명 현상의 정수라고까지 일컬어지는 센트럴 도그마가 단백질의 합성 과정이라는 부분에서부터 얼마나 중요한지 알 수 있는 물질.

이런 다양한 기능을 발휘할 수 있는 이유는 20여 종의 다양한 아미노산들이 역시 다양한 모양으로 엄청난 숫자가 모여서 무궁무진한 경우의 수로 기상천외한 결합을 하며 별의별 구조를 다 만들어낼 수 있기 때문이다. 이렇게 만들어진 특수한 구조들은 일종의 나노머신과 같이 단백질의 특별한 기능을 수행하며, 이런 일을 가능하게 하는 힘은 대부분 전자기력이다. 리보스위치처럼 핵산과 같은 다른 물질이 특수한 기능을 하는 경우도 있지만 상대적으로 극소수이다.

 

구조

분자량부터가 엄청난 데다가 엄청나게 얽히고 꼬인 구조. 문제는 이게 하나라도 달라지면 단백질 자체의 성질도 바뀔 수 있는 입체구조의 거대분자이기 때문에 다른 물질처럼 원소기호와 선만으로 표현하는 것이 불가능하며, 위 그림처럼 단백질 전용의 분자구조 표현 방식을 쓴다.

인간 게놈 프로젝트가 완료되었음에도 기대 만큼의 성과가 나오지 않고 있는 것은 선택적 이어맞추기(alternative splicing)에 의해 유전체(genome)의 정보에 비해 만들 수 있는 단백질의 종류가 정비례하지 않기 때문이다. 또한 단백질 거대분자의 복잡한 구조(꼬임) 때문에 유전정보만 가지고 단백질의 기능을 유추하는 것이 거의 불가능하다. 단지 아미노산의 배열순서만 알아서는 실제 결과물인 단백질 분자가 어떤 3차원적 형태를 갖는지 알 수 없는데, 이 형태야말로 단백질 분자(효소)의 기능을 좌우하는 중요 요소이기 때문이다. 때문에 관련 학문이 갖는 비중이 유전자 서열만 붙들고 파던 유전체학(genomics)에서 단백질 분자의 형태를 연구하는 단백질체학(proteomics)으로 옮겨가고 있다.

기본적으로 이황화 결합(-S-S-; Disulfide Bond)이 많을수록, 그로 순환(Cyclic)할수록 체내에서 안정한 것으로 알려져 있다.

 

단백질 구조

 

단백질 구조의 차수

단백질의 구조는 펩타이드 결합된 아미노산들이 어떤 순서로 배열되어 있는지를 말한다. 일차구조(primary structure)는 단순히 아미노산의 서열을 늘어놓은 것이므로 폴리펩타이드라고 한다. DNA 같은 것과 달리 단백질은 서열 이외에도 다른 고유 구조를 가진다.

이차구조(secondary structure)는 국소적으로 아미노산들이 어떤 구조를 형성하는지 지칭한다. 알파나선과 베타병풍이 대표적. 단백질 전체가 아니라 아미노산들 사이의 아민기와 카르복실기 사이의 국소적인 수소결합으로 인해 형성된 모습을 말하는 것이기 때문에 한 단백질 내에서도 여러 종류, 여러 개의 이차구조가 나타날 수 있다.

삼차구조(tertiary structure)는 이차구조처럼 부분적인 것이 아닌,서열 전체의 3차원 구조를 말한다. 주로 서로 다른 아미노산의 R기 사이의 수소결합, 메탄기 사이의 상호작용, 반 데르 발스 힘, 이황화결합, 이온결합 등으로 형성된다. 여기서부터 단순한 아미노산이나 폴리펩티드의 '단위'가 아니라 한 개의 오롯한 단백질이라고 부를 수 있게 되며 그 단백질의 고유한 기능을 나타낸다.

사차구조(quaternary structure)도 있다. 이것은 여러 개의 단백질이 모여서 어떻게 복합체를 이루는지를 말한다. 예로는 DNA에서 RNA를 전사할 때 사용되는 RNA 중합효소 등이 있다. 엄청나게 많은 단백질들이 뭉친 복합체이다.

 
반응형

댓글